Update on Biochar Characterization/Field Studies

Kurt Spokas
USDA-ARS

"The use of <u>charcoal</u> (biochar) as a fertilizer is not a new thing, though it is only within the few last years that agriculturists have taken much notice of it."

Biochar: Not new for soil additions....

"The use of charcoal (biochar) as a fertilizer is not a new thing, though it is only within the few last years that agriculturists have taken much

notice of it."

-- Pennsylvania Farm Journal (1852)
Editorial (Haldeman) Page 57

FARM JOURNAL, DEVOTED TO Agriculture, Horticulture & Rural Economy. S. S. HALDEMAN, EDITOR.

PENNSYLVANIA

USDA-ARS Biochar Research

Over 20 locations involved in biochar research

3 Main USDA-ARS Biochar Research Areas

I. Biochar for improving soil fertility

II. Biochar for soil remediation

III. Biochar impacts on soil microbial communities

3. Soil Microbial

- Net Soil Greenhouse Gas Production (7 locations)
 - Focusing on mechanisms of biochar-microbe interactions
 - Chemical and physical interactions
 - Sorbed organic compound volatiles → Signaling compounds
 - » Interactions with microbial enzymes/plant hormones
 - Field aging effects / weathering
 - Soil moisture interactions
 - Impact on microbial populations & diversity

Current Ethanol Production

Source: Citigroup Investment Research and U.S. Department of Agriculture

Proposed New Vision of Ethanol Plant Production

MAP Pyrolysis Products

Feedstock	Char (%)	Liquid		
		Organic Phase (%)	Water Phase (%)	Gas (%)
100% Corn stover	27.8	38.9		33.3
DDGS:Corn stover 25:75	26.2	43.7		30.1
DDGS:Corn stover 50:50	25.4	41.8		32.8
DDGS:Corn stover 75:25*	27.0	17.2	28.6	27.2
100% DDGS*	25.0	18.3	27.5	29.2

Chemical Quality of MAP Biochars

Biochar elemental properties varied as a function of feedstock ratios

Laboratory Soil Incubations

Laboratory soil incubations:

- Monitor the production/consumption of greenhouse gases (CO₂, N₂O, and CH₄)
- Monitor nutrient cycling Inorganic N-forms

Soil: N₂O Impacts

Morris, MN Soil – Barnes-Aastad clay loam

2% w/w addition

• Despite linear trends in chemical composition; no similar linear trends in the response of the soil microbial system

10 % w/w addition

Benefit to feedstock mixtures:
 Corn stover + DDGS mixtures suppressed
 the N₂O production observed with the
 100% DDGS biochar addition

Nitrate/Ammonia Sorption

Direct nutrient sorption to biochar?

CO₂ Production – C mineralization

Service

- •All biochar additions stimulated soil CO₂ production
- •Assumption is that the biochar provided some source of additional degradable substrates
- •However Not all statistically significant

CO₂ effects – C mineralization

 Assumption: The extra CO₂ production is of biochar origin

- Max observed mineralization rate of biochar-C :
 - 0.9 μg C/g_soil/day -or <0.1% mineralized after 1 yr
 - 99.9% of C remains in the soil after 1 yr

- For comparison:
 - Non-pyrolyzed DDGS: 80% C lost in 60 d (Cayuela et al., 2010)
 - Non-pyrolyzed corn stover: 55% C lost in 180 d

Rosemount, MN Field Plots

4.9 m

Fall 2008 /Spring 2009

C-CONTROL

B – DYNAMOTIVE FAST PYROLYSIS BIOCHAR (20,000 lb/ac)

BM – DYNAMOTIVE FAST PYRLOYSIS BIOCHAR + MANURE M – MANURE ONLY

BE - BEST ENERGIES SLOW PYROLYSIS CHAR (20,000 lb/ac) MN – MACADEMIA NUT BIOCHAR (20,000 lb/ac)

Spring 2010 applications

CE - Chip Energy (wood pellet biochar) (20,000 lb/ac) CB - Cowboy Lump (hardwood) Charcoal (20,000 lb/ac)

Spring 2011 Applied

WP1 - Wood Pellet (5,000 lb/ac)

WP2 - Wood Pellet (10,000 lb/ac)

WP3 – Wood Pellet (20,000 lb/ac)

IP1 – Pine chip BC from ICM (20,000 lb/ac)

IP1 – Pine chip BC from ICM (20,000 lb/ac)
IWM – Wheat midds BC from ICM (20,000 lb/ac)

Spring 2012 applied

CE2 – Corn Cob BC (Chip Energies) (10,000 lb/ac) SY – Wood Chip Biochar from Syvla (10,000 lb/ac)

ASA Biochar Community

- Meeting in Cincinnati, OH
- Oct. 21-24, 2012
- 1 ½ days of biochar talks:
 - Monday morning and afternoon oral session
 - Tuesday morning session
 - Poster Session Monday late afternoon
- Biochar researcher of the year, best presentation and student poster awards